In logic the addition law and simplification law are sometimes misused.
Law of Addition
p→p∨q
This law states that if a proposition p is known to be true then the disjunction of p with any other proposition will also be true.
Law of Simplification
[(p)∧(q)]→p
also,
[(p)∧(q)]→q
This law states that if the conjunction of p and q is true then we can deduce p is true. Similarly, we can deduce q is true. Remember that [(p)∧(q)] is true only if both propositions p and q are true. That's why we can deduce p is true and that q is true.
Some students attempt to apply the law of simplification to a disjunction. Without knowing the truth values of p and q some students may deduce from the statement p∨q that p is true or that q is true. This is not valid. From p∨q we know that at least one of the propositions is true, but we do not have enough information to know which one of them is true.
No comments:
Post a Comment